工業技術研究院

Industrial Technology Research Institute

iBEMS能源管理系統實例介紹

(台中慈濟醫院、大林慈濟醫院)

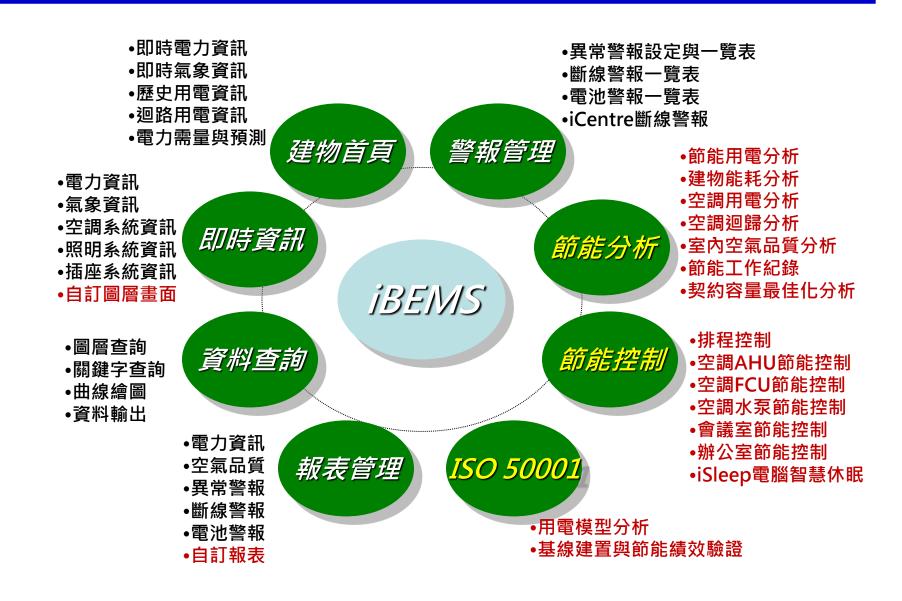
陸忠憲綠能所

105.7.7

慈濟醫療體系能源管理系統

● iBEMS系統提供建物用電管理、即時顯示、資料查詢、報表管理、警報管理、節能分析,以及空調、照明、設備、會議室、辦公室等智慧節能控制服務。

大林慈濟醫院iBEMS



台中慈濟醫院iBEMS

工業技術研究院 Industrial Technology Research Institute

iBEMS智慧型建物能源管理系統

慈濟醫療體系能源管理系統

目前慈濟醫院用電密度EUI (年度kWh/m2)

- 大林慈濟·2015年EUI=149 (國內區域醫院平均值約為209至235)
- 台中慈濟, 2015年EUI=133 (國內區域醫院平均值約為209至235)

能源管理重點

- 用電分析
- 基線建置與分析
- 契約容量分析
- 空調效能指標
- 空調節電評估

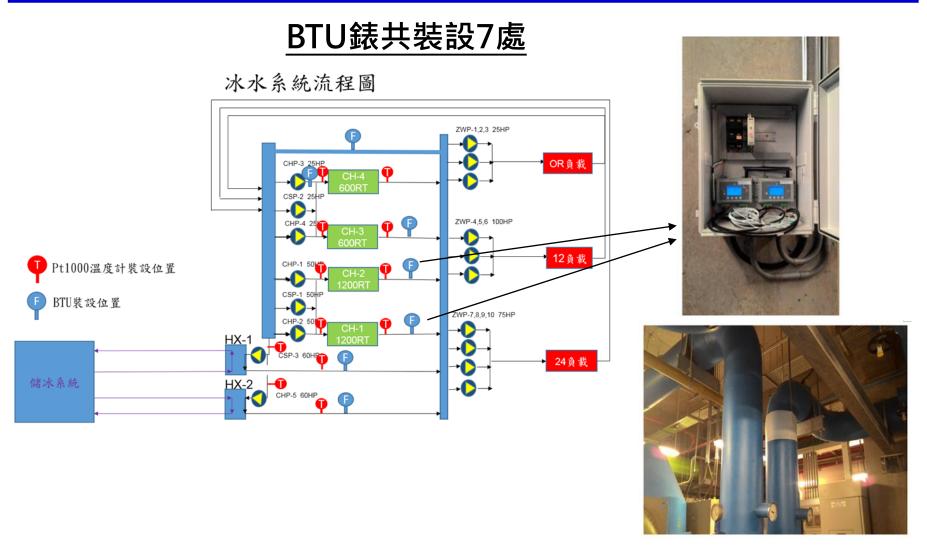


台中慈濟醫院能源管理系統

台中慈濟iBEMS系統建置概況

電表總計安裝28處

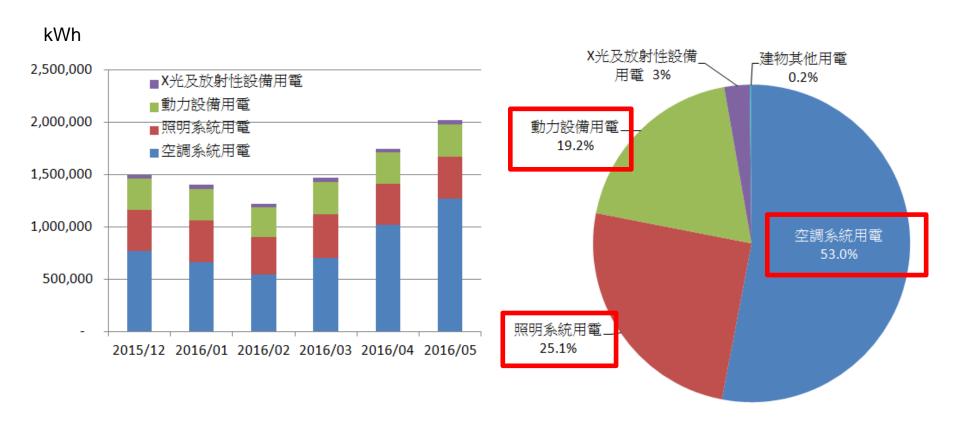
第一變電站之數位電表安裝


後棟變電站之數位電表安裝

空調機房之數位電表安裝

T業技術研究院 Industrial Technology Research Institute 台中慈濟IBEMS系統建置概況

冰機CH-01、02之超音波流量計安裝

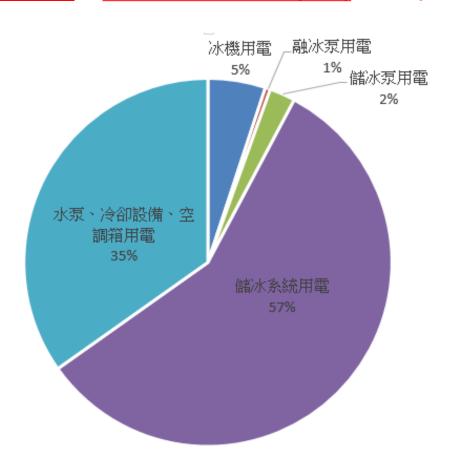


台中慈濟電力分析

台中慈濟整體用電分析

分析時間範圍:2015年12月~2016年05月

主要用電為: 空調系統 (53%)、 照明系統(25.1%)、動力設備(19.2%)等



台中慈濟電力分析

台中慈濟空調用電分析

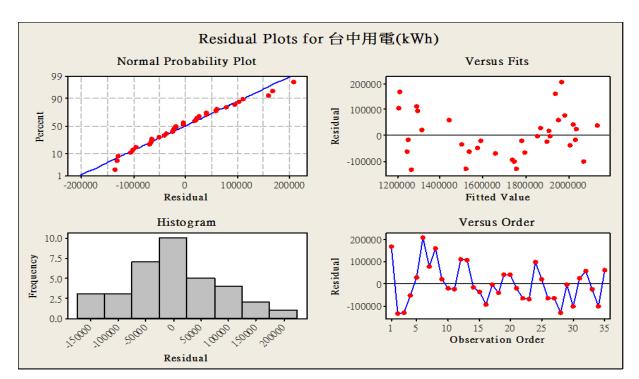
分析時間範圍:2015年12月~2016年05月

主要用電為: 儲冰系統 (57%)、 水泵、水塔、空調箱(35%)、 冰機(5%)等

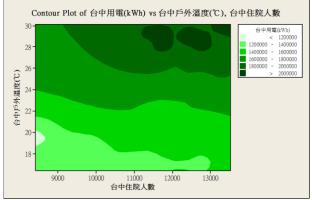
台中慈濟基線建置與分析

台中慈濟總用電基線回歸

分析時間範圍:2013年01月~2015年9月


總用電基線回歸結果:

月總用電量 = 57,992*戶外溫度(℃) + 26*住院人數


迴歸模型分析:

溫度上升1℃,月總用電量增加57,996 kWh;住院人數加1人,月總用電量增加26kWh

(註:迴歸模型的R平方 > 75%,表示模型具有75%的可靠度,R平方越高越好)

R平方	97%
F檢定統計量	6994
P值	0.000
分析樣本數	35

台中慈濟基線建置與分析

台中慈濟總用電基線分析

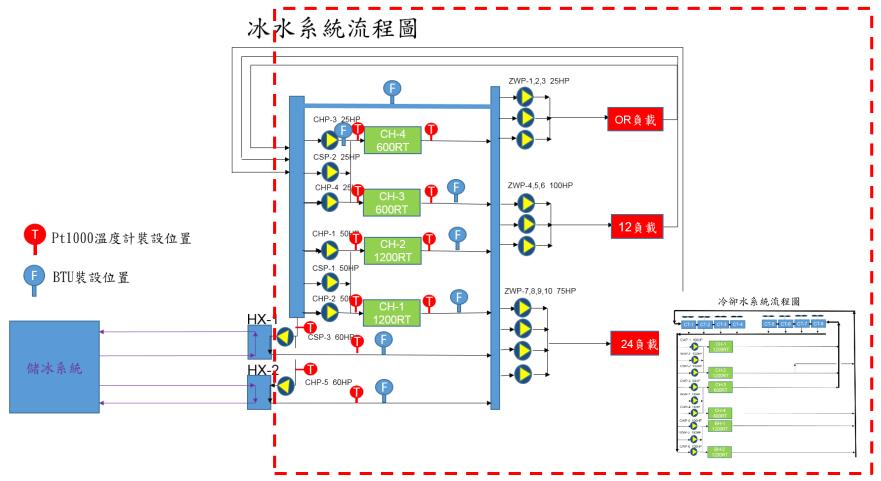
- ◆ 利用基線去除耗能因子(外氣溫、人數)對用電量的影響,得到真實用電量分析比較。
- ◆ 以2016 1-4月為例,今年用電比去年用電**耗電243,058度**,但是用基線方式計算後,可修正為**耗電166,161度**, 前後兩者差異為**77,897度**。

		1月	2月	3月	4月	總和
	戶外月均溫(°C)	17.1	18.1	20.7	24.4	
2015年	每月住院人數	12710	9736	12824	12762	48,032
	實際用電量(kWh)	1334000	1177600	1470400	1626400	5,608,400
	戶外月均溫(℃)	16.8	16.4	18.3	24.9	
	每月住院人數	12710	9736	12824	12988	48,258
2016年	實際用電量(kWh)	1404961	1221711	1472745	1752041	5,851,458
	基線用電量(kWh)	1304725. 6	1204204. 8	1394677. 6	1781688. 8	5,685,297
傳統用電量比較	2016年實際用電 - 2015年實際用電 (kWh)	70961	44111	2345	125641	243,058
基線用電量比較	2016年實際用電 - 2016年基線用電 (kWh)	100235	17506	78067	-29648	166,161

(註:"正值"代表耗電)

台中慈濟契約容量分析

103年10月至104年10月間各期最高需量變化


• iBEMS契約容量最佳化分析,建議可將經常契約容量降低至2850瓩,離峰契約容量改成約定週六半尖峰契約容量,數值訂在824瓩,電費節省比例約2.65%(1,535,428元)。

台中慈濟空調效能指標

●台中慈濟空調為儲冰式系統,本次分析以冰水主機系統 為主。

本次分析範圍

醫院設施之水電氣供需

- ●建物中,由電力提供建物各項環境設施與儀器設備
 - □ 例如包括空調、照明、水、儀器設備、...等

降低需求:減少冰水RT冷凍噸/m²或RT冷凍噸/人

提高效率:減少kW/RT冷凍噸

能源效率指標建立

新加坡Green Mark能源效率指標

既有建物之空調水系統能源效能指標

2. MINIMUM SYSTEMS' EFFICIENCY

Minimum Design System Efficiency/Operating System Efficiency (DSE/OSE)

(i) For buildings using Water-Cooled Chilled-Water Plant

	Building Coo	ling Load (RT)	
Green Mark Rating	< 500	≥ 500	
	Efficiency (kW/RT)		
Certified	0.85	0.75	
Gold	0.80	0.70	
Gold ^{Plus}	0.75	0.68	
Platinum	0.70	0.65	

(ii) For Buildings using Air Cooled Chilled-water Plant or Unitary Air-Conditioner

	Building Coo	ling Load (RT)		
Green Mark Rating	< 500	≥ 500		
	Efficiency (kW/RT)			
Certified	1.1	1.0		
Gold	1.0			
Gold ^{Plus}	0.85	Not		
Platinum	0.78	applicable		

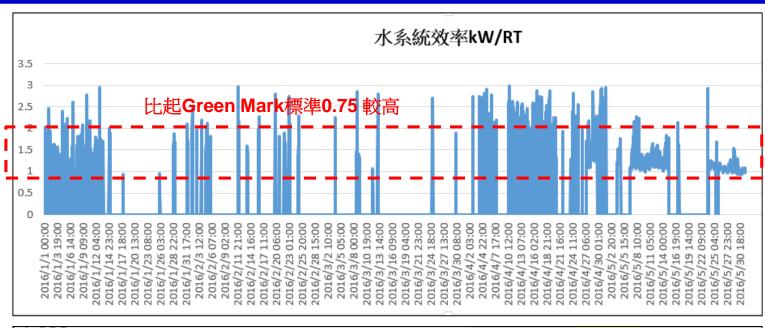
For building with building cooling load of more than 500 RT, the use of air cooled central chilled-water plant or other unitary air-conditioners are not applicable for Gold and higher ratings.

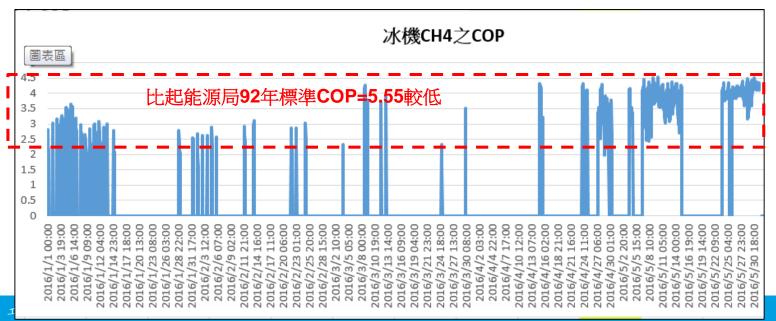
Note: The performance of the overall air-conditioning system for the building is based on the Operating System Efficiency (OSE) of the system during the normal building operating hours as defined below:

Office Building: Monday to Friday: 9am to 6pm Retail Mall: Monday to Sunday: 10am to 9pm Institutional:	Hotel and Hospital: 24-hour Industrial and Other Building Types: To be determined based on the operating
Institutional: Monday to Friday: 9am to 5pm	hours

空調系統冰水主機能源效率標準展開

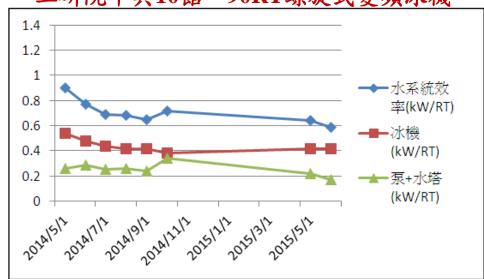
公告附表:

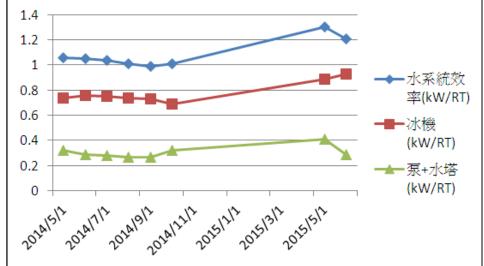

空調系統冰水主機能源效率標準


			永州小小工法院 源。	~ -		
	執行階段			階段	第二階段	
	實施日	期	民國九十二	年一月一日	民國九十四年一月一日	
型	式	冷卻能力等級	能源效率比 值(EER)kcal/h- W	性能係 數(COP)	能源效率比 值(EER) kcal/h-W	性能係數(COP)
水冷式	容積式	<150RT	3.50	4.07	3.83	4.45
	壓縮機	≧150RT ≦500RT	3.60	4.19	4.21	4.90
		>500RT	4.00	4.65	4.73	5.50
	離心式	<150RT	4.30	5.00	4.30	5.00
	壓縮機	≧150RT <300RT	4.77	5.55	4.77	5.55
		≧300RT	4.77	5.55	5.25	6.10
氣冷式	⇒式 全機種		2.40	2.79	2.40	2.79

註:

- 1.冰水機能源效率比值(EER)依CNS12575容積式冰水機組及CNS12812離心式冰水機組規定試驗之冷卻能力 (Kcal/h)除以規定試驗之冷卻消耗電功率(W),測試所得能源效率比值不得小於上表標準值,另廠商於產品上之標 示值與測試值誤差應在百分之五以內。
- 2.性能係數(COP)=冷卻能力(W) / 冷卻消耗電功率(W)=1.163EER。1RT(冷凍噸)=3024Kcal/h。


台中慈濟空調效能指標


空調水系統能源效能量測案例

工研院中與10館,90RT螺旋式變頻冰機

月份	水系統 效率	冰機	泵+ 水塔)	冰機 COP	負載率	控制
	(l	(W/RT)		COI	PLR	
2014/5/1	0.88	0.53	0.34	5.75	39.7%	Fuzzy優化控制
2014/6/1	0.75	0.47	0.27	6.48	59.8%	Fuzzy優化控制
2014/7/1	0.69	0.44	0.24	6.91	73.8%	Fuzzy優化控制
2014/8/1	0.67	0.42	0.25	7.31	69.5%	Fuzzy優化控制
2014/9/1	0.65	0.42	0.23	7.32	68.5%	GA最佳化控制
2014/10/1	0.63	0.38	0.26	8.16	43.5%	GA最佳化控制
2015/5/1	0.62	0.42	0.20	7.32	41.9%	GA最佳化控制
2015/6/1	0.60	0.42	0.17	7.26	73.4%	GA最佳化控制

工研院中與9館,90RT螺旋式定頻冰機

月份	水系統 效率	冰機	泵+ 水塔)	冰機 COP	負載率	控制
	(k	(kW/RT)			PLR	
2014/5/1	1.06	0.74	0.31	4.13	35.5%	Fuzzy優化控制
2014/6/1	1.04	0.76	0.28	4.06	40.9%	Fuzzy優化控制
2014/7/1	1.03	0.75	0.28	4.10	48.6%	Fuzzy優化控制
2014/8/1	1.00	0.74	0.26	4.15	46.9%	Fuzzy優化控制
2014/9/1	1.00	0.73	0.27	4.22	46.4%	Fuzzy優化控制
2014/10/1	1.00	0.69	0.31	4.46	30.7%	Fuzzy優化控制
2015/5/1	1.26	0.89	0.37	3.46	27.9%	手動定頻控制
2015/6/1	1.21	0.93	0.28	3.30	41.4%	手動定頻控制

大林慈濟醫院能源管理系統

T業技術研究院 Industrial Technology Research Institute 大林慈濟IBEMS系統建置概況

電表總計安裝25處

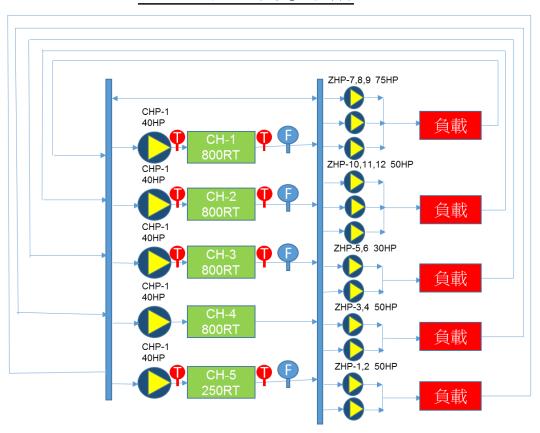
第一變電站

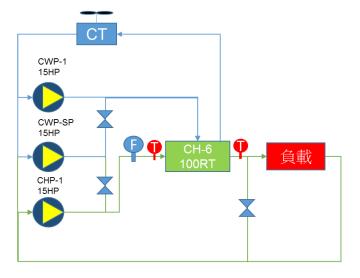
BMHA-1	BEMHA-1	BMACA-1	BEMACA-1	BMACB-1
	3			
BEMACB-1	BEMP-1	MCBA-1	MCBA-2	
120 Miles			THE RES	

第二變電站

ACMB1B	EACMB1	ACMB1A	CH-1	CH-2
Haraco Anna Pa				
	000	13 60		
Tool	A STATE OF THE STA		三	F
ACMB1C	DEMP			
33				
1				
	EEE			

空調機房

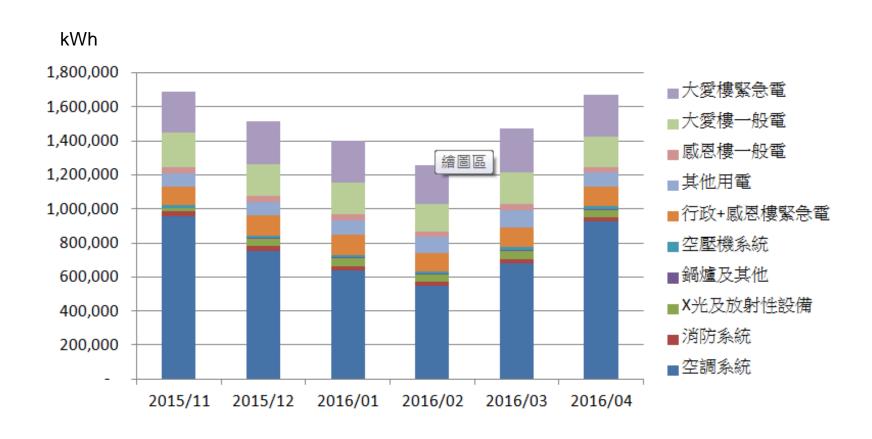

AEMHB-2	ACBP-3	ACBP-2


T業技術研究院 Industrial Technology Research Institute 大林慈濟IBEMS系統建置概況

BTU表總計安裝5處

院區主要空調水系統

開刀房空調水系統

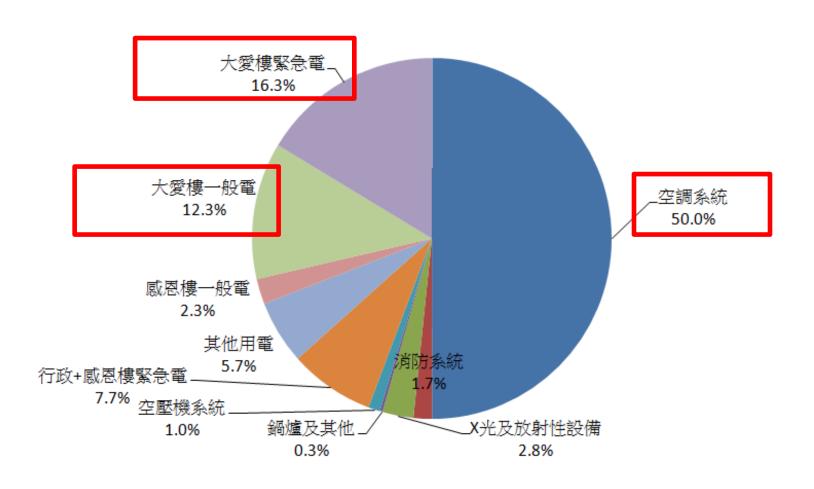


大林慈濟電力分析

大林慈濟用電分析

分析時間範圍:2015年11月~2016年04月

僅空調系統用電會隨著季節月份變化,其餘用電皆為平穩

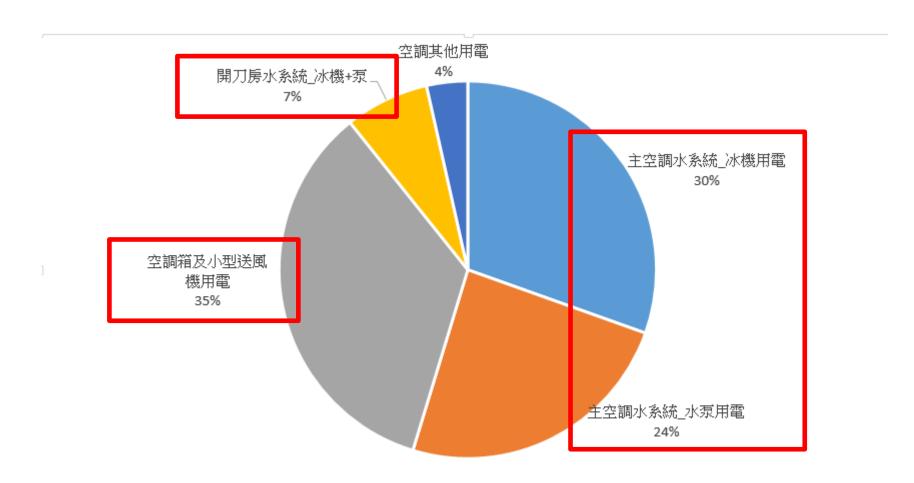


大林慈濟電力分析

大林慈濟整體用電分析

分析時間範圍:2015年11月~2016年04月

主要用電為: 空調系統 (50%)、大愛樓緊急電 (16.3%)、大愛樓一般電 (12.3%)等



大林慈濟電力分析

大林慈濟空調用電分析

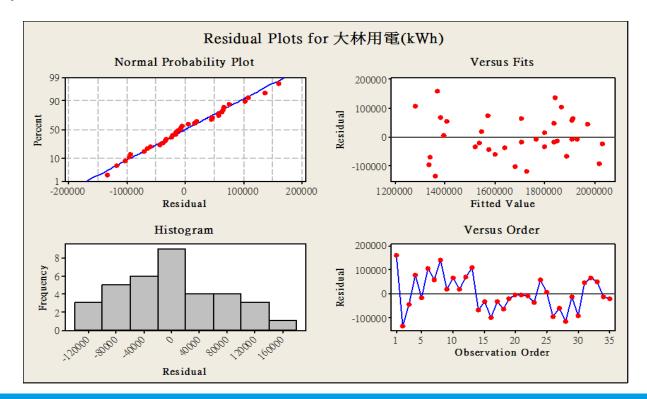
分析時間範圍:2015年11月~2016年04月

主要用電為: 主空調水系統(54%)、空調箱與小型送風機 (35%)、開刀房水系統 (7%)等

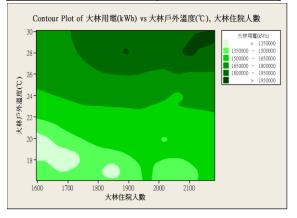
大林慈濟基線建置與分析

大林慈濟總用電基線回歸

分析時間範圍:2013年01月~2015年9月


總用電基線回歸結果:

月總用電量 = 45,831*戶外溫度(°C) + 297*住院人數


迴歸模型分析:

溫度上升1℃,月總用電量增加45,831 kWh;住院人數加1人,月總用電量增加297kWh

(註:迴歸模型的R平方 > 75%,表示模型具有75%的可靠度,R平方越高越好)

R平方	97. 1%
F檢定統計量	10292.13
P值	0.000
分析樣本數	35

大林慈濟基線建置與分析

大林慈濟總用電基線分析

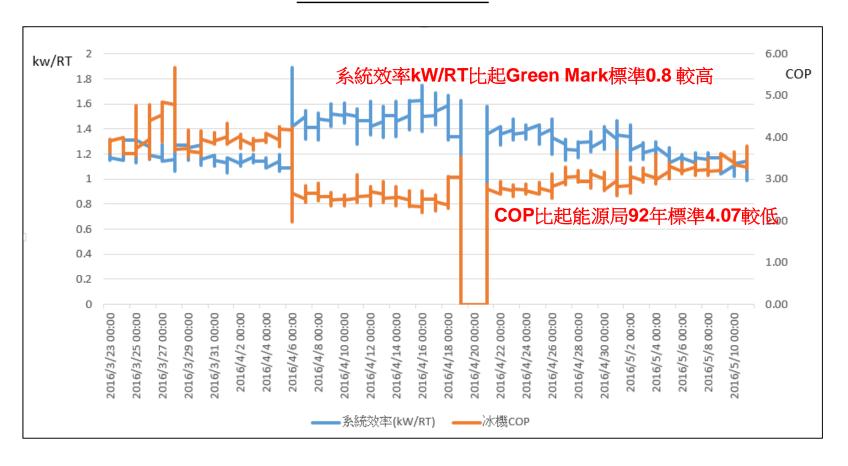
- ◆ 利用基線去除耗能因子(外氣溫、人數)對用電量的影響,得到真實用電量分析比較。
- ◆ 以2016 1-4月為例,今年用電比去年用電**耗電13,112度**,但是用基線方式計算後, 反修正為**節電-190,410度**,前後兩者差異為203,532度。

	項目	1月	2月	3月	4月	總和
2015年	戶外月均溫(°C)	16.8	18.1	20.9	24.1	
	每月住院人數	2053	1695	2126	2067	7,941
	實際用電量(kWh)	1398000	1237600	1541200	1608000	5,784,800
2016年	戶外月均溫(°C)	16.9	16.6	18.7	25.4	
	每月住院人數	2043	1937	2219	1989	8,188
	實際用電量(kWh)	1400926	1257209	1470907	1668870	5,797,912
	基線用電量(kWh)	1381314	1336083	1516082	1754840	5,988,322
傳統用電量比較	2016年實際用電 - 2015年實際用電 (kWh)	2926	19609	-70293	60870	13,112
基線用電量比較	2016年實際用電 - 2016年基線用電 (kWh)	19611	-78875	-45176	-85970	-190,410

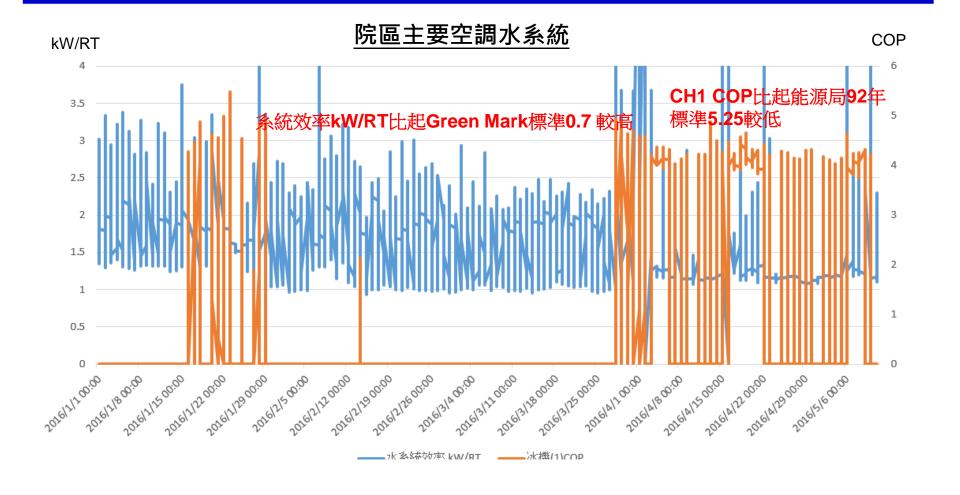
(註:"正值"代表耗電)

大林慈濟契約容量分析

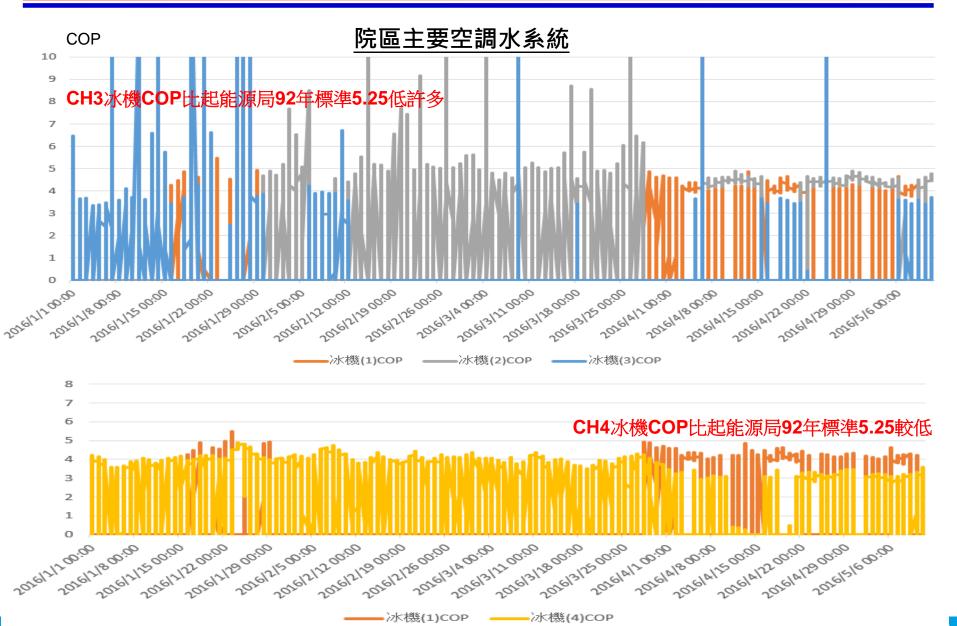
103年11月至104年10月間各期最高需量變化



· iBEMS契約容量最佳化分析,建議可將經常契約容量微幅提昇至3570瓩,電 費節省比例僅約0.03%(18,766元),代表目前的契約容量已設定值相當不錯。


大林慈濟空調效能指標

開刀房空調水系統



大林慈濟空調效能指標

大林慈濟空調效能指標

結論

- 利用能源管理系統可有效進行能源使用分析、節能潛力 評估及節能改善驗證。
- 透過基線分析,可去除耗能因子(例如外氣溫、人數)對 用電量的影響,反應出真實的用電或節電行為。
- ●台中慈濟醫院
 - □ 節能潛力以空調系統、照明系統為主要對象,空調系統中尤以儲冰系統、空調箱、冰水區域泵、水塔為優先改善對象。
- ●大林慈濟醫院
 - □ 節能潛力以空調系統為主要對象,空調系統中尤以冰水系統、空調箱為優先改善對象。

簡報結束,謝謝! Q&A